Posts

Showing posts with the label materials science

Understanding Machine Learning Interatomic Potentials in Chemistry and Materials Science

Image
Machine learning interatomic potentials (MLIPs) sit in a sweet spot between classical force fields and expensive quantum chemistry. They learn an approximation of the potential energy surface from reference calculations (often density functional theory or higher-level methods), then use that learned mapping to run molecular dynamics and materials simulations far faster than direct quantum calculations—while keeping much more chemical realism than many traditional empirical potentials. That speed-up changes what scientists can attempt: longer time scales, larger systems, broader screening campaigns, and faster iteration between hypothesis and simulation. But MLIPs also introduce new failure modes: silent extrapolation, dataset bias, uncertain reproducibility, and “it looks right” results that may not hold outside the training domain. This page explains MLIPs in a practical way—how they work, which families exist, how to build them responsibly, and how to trust (or distrust...